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SUMMARY OF CENTER-OF-GRAVITY ACCELERATIONS
EXPERIENCED BY COMMERCIAL TRANSPORT AIRPLANES
IN LANDING IMPACT AND GROUND OPERATIONS

By Paul A. Hunter
Langley Research Center

SUMMARY

A summary of landing impact accelerations has shown that for 24 operations
(airline-airplane combination) representing a total of 22464 landings, the initial positive
incremental landing impact accelerations expected to be exceeded once in 10000 landings
range from about 0.79g to about 1.67g (1g = 9.81 m/secz). These differences among the
landing impact acceleration experiences of the various operations apparently reflect the
combined effects of differences among the airplane characteristics and landing approach
techniques used by the various airlines. These data were extrapolated by means of
mathematically fitted Pearson curves.

In ground operations, only small differences in overall normal acceleration experi-
ence during taxi, takeoff, and landing exist for the seven operations investigated. Landing
rollout contributed most heavily, and taxi contributed the least, to the overall ground
acceleration experience. The maximum incremental accelerations recorded ranged from
0.5g to 0.7g.

Longitudinal decelerations measured during 556 landings indicated that maximum
values ranged from about 0.12g to 0.42g.

INTRODUCTION

The structural loads experienced by commercial transport airplanes during ground
operations (taxiing, takeoff, and landing) have an important bearing on the design strength
and fatigue requirements. Also, a knowledge of the loads imposed by the airplane on run-
ways and taxiways is necessary for the proper design of these surfaces, particularly when
novel design features such as trestles and bridge-type construction are employed. Inas-
much as statistical data on the loads are difficult to acquire, recourse often has been made
in the past to deducing the loads from measurements of the center-ofl-gravity accelera-
tions experienced by airplanes during routine operations. Information regarding landing
impact accelerations has been published in references 1 and 7 and small samples of



acceleration data during taxi, takeoff, and landing for piston and turboprop transports are
given in references 8 and 3, respectively. A somewhat larger sample of ground accelera-
tion data is given in reference 7 for a turbojet transport.

As part of a continuing program to define the operational experiences and loads of
turbine-powered transports, statistical ground load data have been collected on several
additional types of airplanes operated by United States and foreign airlines. The data per-
tain to the normal accelerations of the center of gravity during landing impact, taxiing,
takeoff, and landing rollout and to the longitudinal decelerations during landing rollout.
The frequency distributions of the measured accelerations and some analyses of the data
are presented in this paper. In order to provide a convenient summary of all the ground
loads data collected on turbine-powered airplanes, some of the previously published data
are also included herein.

AIRPLANES AND SCOPE OF DATA

Some of the characteristics of the airplanes from which the data were collected are
given in table I. The units are given in both the International System of Units (SI) and
U.S. Customary Units. Factors relating the two systems are given in reference 9. The
measurements and calculations were made in U.S. Customary Units. The basic airplane
types are designated by a Roman numeral and different models of a basic type are denoted
by letter suffixes. The suffix F is used to indicate turbofan-powered versions of two
models of airplane type I. As shown in table I, data were collected from 18 airplane
models encompassing 12 basic airplane types. The airplanes included two-, three-, and

four-engine models and ranged in maximum design takeoff weight from 166 808 to
1459017 newtons (37500 to 328 000 1bf).

The scope of the data is shown in table II for each of the airline operations from
which the data were obtained and the sample sizes evaluated for accelerations experienced
during landing impact and ground operations. For purposes of this paper, an airline oper-
ation is considered to be one or more airplanes of a given model flown by a single airline.
The airline operations are denoted by a letter designation of the airline preceding the
Roman numeral and letter suffix designation of the airplane model. Samples of landing
impact acceleration were obtained from 24 airline operations involving a total of 38 indi-
vidual airplanes. The sizes of the data samples range from 556 to 2445 landings and in
total represent 22464 landings. Normal accelerations experienced during taxi, takeoff,
and landing runout were obtained from seven airline operations. The individual data sam-
ples represent from 158 to 827 flights. Data on the decelerations during landing were
obtained from 556 landings of a four-engine turbofan airplane flown in commercial cargo

operations by one airline.




INSTRUMENTATION

The data were collected through the use of NASA VGH recorders (ref. 10) which
provide time-history records of indicated airspeed, normal acceleration, and pressure
altitude on 61-meter (200-foot) rolls of photographic paper. A film transport speed of
0.203 millimeter (0.008 inch) per second was used to record landing impact accelerations
and longitudinal decelerations, and a speed of 0.787 millimeter (0.031 inch) per second
was used to record data during taxi, takeoff, and landing rollout. The remote acceleration
sensor was located as close as practicable to the airplane center of gravity. In the most
extreme instance, the acceleration sensor was located 1.2 meters (4 feet) aft of the posi-
tion equivalent to the 25-percent mean-geometric-chord location. The electrical signal
from the acceleration sensor is transmitted to a galvanometer in the recorder base.

Two types of galvanometers having different response characteristics have been
used in the recording program. The response of the accelerometer in combination with
each type of galvanometer is shown in figure 1. As shown in the figure, the frequency
response of the recorder with galvanometer A is essentially flat up to frequencies of about
6 hertz, whereas that of the recorder with galvanometer B is flat up to about 10 hertz.
Above these frequencies, both recorders progressively attenuate the response with
increasing frequency. The center-of-gravity normal acceleration at landing impact
generally consists of a low-frequency component associated with the airplane rigid body
response and superimposed high-frequency responses due to the structural modes. From
special investigations of landing impact responses of several types of airplanes, it has
been observed that the structural mode responses generally have frequencies between
about 1%— hertz to 10 hertz. Also, the magnitude of these responses generally range
between 25 to 50 percent of the low-frequency rigid body response. Inasmuch as the
slow film speed used in the present investigations does not permit separation of the struc-
tural responses from the rigid body responses, the normal acceleration data obtained
represent the peak values of the combined responses. Because two types of recorders
having different response characteristics (fig. 1) have been used, there is a possibility
that structural responses higher than about 6 hertz may not be reflected to the same
extent in the data collected with the two recorders. This aspect of the data will be dis-
cussed further in the section entitled "Results and Discussion.™

EVALUATION OF RECORDS
The evaluation of the records for the landing impact data consisted in reading the

maximum positive normal acceleration increment (from the 1.0g trace position) due to
each initial landing impact. Subsequent accelerations, which may have occurred after the



initial landing impact, were not included in the landing impact data but were included in
the landing rollout data.

The records of normal acceleration during ground operations were edited to denote
the portions of the records corresponding to preflight taxiing, takeoff, landing rollout, and
postflight taxiing. These classifications are defined as follows:

Preflight taxi — from initiation of taxiing to beginning of takeoff roll

Takeoff — from beginning of takeoff roll to lift-off

Landing rollout — from immediately after initial landing impact
until airplane was slowed to taxi speed

Postflight taxi — from end of landing rollout to termination of taxiing

The 1.0g position of the acceleration trace was used as a reference from which to read

the incremental normal acceleration peaks which equaled or exceeded selected threshold
values. Only the maximum incremental value of the acceleration was read for each
crossing of the reference. An incremental threshold value of +0.1g was used for two of
the operations, and a value of +0.2g was used for the other five operations. The data were
tabulated according to the four classifications previously discussed. Also, the data during
the takeoff and landing rollout were further categorized according to intervals of airspeed.

The time histories of deceleration during landing rollout generally exhibited a varia-
tion similar to one of the three characteristics curves shown in figure 2. For each
landing rollout, the maximum deceleration was read in the manner indicated in the figure
in terms of inches of trace deflection. The trace deflections were converted to accelera-
tion units and tabulated in acceleration intervals of 0.01g. The data were also sorted
according to whether they came from an operational flight or from an airplane- or pilot-
check flight.

RESULTS AND DISCUSSION

Landing Impact Accelerations

The frequency distributions of initial positive incremental landing impact accelera-
tions are given in table TI for the 24 operations. For each operation, the number of
landings represented, the number of airplanes involved in each operation, and the refer-
ences for those data which have been previously published are given. In addition, the
mean value and the value of acceleration expected to be exceeded, on the average, once
in 10000 landings based on extrapolation by use of Pearson curves are also given. The
number 10000 was arbitrarily chosen as representative of the large amplitudes expected
during extended operations.




Effect of galvanometer.- As was discussed in the section entitled "Instrumenta-
tion," there is some question concerning possible disparity between the acceleration data
obtained by the recorders using the type A galvanometers and those obtained by using the
type B galvanometers. In this connection, the data given in table III for operation ATJAF
are particularly of interest inasmuch as part of these were obtained with the type A
recorder and the remainder with the type B recorder. To determine whether there were
any effects of recorder type, the data were sorted according to the type of recorder, and
the two samples are shown in figure 3(a) in terms of the probability of equaling or
exceeding a given value of acceleration during a landing. The results apparently show
an increase in acceleration of about 20 percent by the use of the type B recorder. Because
only two rather small samples representing only one operation are involved, the evidence
is not considered conclusive, however. For further analysis, two other large data sam-

ples — one from an operation using galvanometer type A and one from an operation using
galvanometer type B — were randomly divided into a number of smaller samples, compa-
rable in size to those shown in figure 3(a). These small samples, presented in figure 3(b),
show a variation in probability of exceeding a given landing impact acceleration, say for
instance 0.5g, of the same order for either operation as that shown in figure 3(a). Conse-
quently, the results of figure 3(a) are believed to be attributable to sample size; it is con-
cluded that galvanometer type had no appreciable affect on the accelerations measured.

Data extrapolation.- In past presentations of landing impact acceleration probability
data, the data points have either been connected by straight-line segments or, where
some extrapolation was desired, have been arbitrarily fitted with a Pearson type III curve
using the method of reference 11, For the present data, a brief study was undertaken to
find a curve-fitting method that would predict more reliably the probability of occurrence
of a given high value of incremental landing impact acceleration. Methods such as least
squares and several variations of extreme value theory were examined; however, the
method of fitting Pearson curves given in reference 12 was chosen. This method utilizes
the first four moments of the experimental frequency data to compute parameters leading
to the choice of the particular type of Pearson curve which best fits the data.

The frequency distributions given in table III were formed into distributions repre-
senting probability of exceeding given values of landing impact acceleration and are plot-
ted in figure 4 for each operation. Each distribution has been fitted with a Pearson curve
using the method of reference 12, and the type of Pearson curve chosen for the fit is
labeled in the figure.

Comparison of landing experience by airplane type.- A gross comparison of the
landing impact acceleration experience of the various operators and airplanes is provided
by the mean values of the accelerations and the estimated acceleration values which would
be exceeded on the average once in 10000 landings. given in table III for each of the data




samples. These data show that the mean values of the distributions for the individual
operations range from about 0.22g to 0.41g and that the estimated landing impact accel-
erations expected to be exceeded once in 10 000 landings range from about 0.79¢ to 1.67g.
These differences among the landing impact acceleration experiences of the various oper-
ations apparently reflect the combined effects of differences among the airplane charac-
teristics and landing approach techniques used by the various airlines. The maximum
value recorded during these 22 464 landings was 1.8g.

The Pearson curves of figure 4 representing the landing impact acceleration prob-
bility distributions have been grouped to facilitate comparison of landing impact experi-
ence. Figure 5(a) provides a comparison for the type I airplanes. As is indicated in
table I, type I includes models of varying sizes and weights. In general, however, the
major classifications within type I may be considered as the small series consisting of
models IA and TAF and the large series consisting of models IC, ICF, and ID. The dif-
ferences between these series are so large that they may be considered to be different
airplanes so far as landing experience is concerned. In two of the three operations, the
curves of figure 5 show the landing experience for the larger series of the type I airplane
to be more severe than that of the small series above about 0.8g. Operation EIC is not
only an exception in that the experience for that operation is the least extreme of the
type I airplanes but, as is indicated in table III, has the lowest value of acceleration
expected to be exceeded (0.79g) for one landing in 10 000 of any of the 24 operations sam-
pled. The values of acceleration expected to be exceeded as given in table III are 0.95¢
and 1.16g for the type IA airplanes and 1.34g and 1.35¢g for the larger type I airplanes.

The probability distribuvtions for type II airplanes shown in figure 5(b) generally
exhibit about the same variation in acceleration values at a given probability as did those
of the type IA airplanes. The exception is the distribution for operation CIIB which
included one landing at 1.8g incremental. Table III indicates that the acceleration
expected to be exceeded for one landing in 10000 is 1.67g for operation CIIB and ranges
from 0,97g to 1.18g for the remaining operations.

Distributions representing landing impact experience for several other four-engine
types and one type of three-engine jet airplane are shown in figure 5(c). The accelera-
tions expected to be exceeded for one landing in 10000 are 1.31g and 1.27g for operations
IIITA and AVIIA, respectively, and range from 0.96g to 1.35¢g for the three operations
involving the type IXA airplane. Two of the operations for the type IXA airplane exhibit
similar and rather mild landing impact experience but the third operation was more
severe. Examination of the frequency of occurrence for the three operations of the
type IXA airplane in table III shows that operation UIXA experienced fewer of the small
accelerations (0 to 0.2g) and more of the larger accelerations (0.3g and larger) than did
operations AIXA or WIXA; consequently, the mean value is higher for operation UIXA,




Landing impact probability distributions for four types of two-engine jet transports
are shown in figure 5(d). Three of these are reasonably similar and mild, but the dis-
tribution for the fourth operation (JXVIB) is one of the most severe of the distributions
presented in this paper. The acceleration expected to be exceeded for one landing in
10000 for this operation is 1.54g and the mean value is 0.384g. The accelerations
expected to be exceeded for one landing in 10000 are 1.04g, 0.93g, and 1.05g, respec-
tively, for operations GVIIIB, SXIIIA, and IXIVA.

Figure 5(e) shows the probability of exceeding given landing impact accelerations
for three types of turboprop transport airplanes. Three of the operations — AIVA, JVA,
and DVIA - show about the same value of acceleration expected to be exceeded in one
landing in 10000, but the accelerations expected to be exceeded at intermediate proba-
bilities differ considerably. The shape of the probability curve for operation DVIA is
unusual compared to others and is a result of the combination of a low mean value and
a few points located at the "tail" of the distribution. While they all have the same shape,
the curves for the three operations of the type IVA airplane result in quite different
values of acceleration expected to be exceeded in one landing in 10000: 1.07g, 0.97g,
and 1.36g for airlines A, B, and C, respectively.

Effect of airline on landing experience.~ Although not plotted by airline, the data
have been examined to determine if there were any trends by airline. Airline A was
involved in five operations, airline E in three, and airlines C, G, I, and J in two each.
No apparent trends by airline were noted. The two operations for airline G — operations
GIIA/B and GVIIIB — showed relatively little variation in acceleration expected to be
exceeded for one landing in 10000 (1.04g to 1.13g), but the two operations for airline J
and the five operations of airline A both showed relatively large variations in the accel-
erations expected to be exceeded for one landing in 10000. However, airline G has had
a procedure of setting up landing conditions (gear, flaps, and power) at a point farther
from touchdown than is usual with other airlines and this procedure may be responsible
for the small variation in acceleration noted previously.

Significance of extreme value landing impact.- Statistically, an acceleration as
large as the 1.8g shown in figure 4(g) would be expected to occur only once in a sample
many times larger than the 1512 landings obtained for operation CIIB. For example,
operation JVA with 2445 landings had a maximum incremental acceleration of only 1.0g
to 1.1g, and operation AVIIA with 1504 landings had a maximum of 1.1g to 1.2g. (See
table III.) The 1.8g acceleration was experienced during a check-and-training flight
for which airplane gross weights are generally low. Unfortunately, the number of check
flights which occur during a typical VGH data collection period is too small to provide
a statistically reliable sample of the landing impact accelerations experienced for check
flights alone.




In order to ascertain the effect of one extreme point in a distribution, the 1.8g
point was deleted from the data of operation CIIB and a new probability distribution was
formed. The probability distributions, together with the Pearson faired curves, for
operation CIIB with and without the 1.8g point are shown in figure 6. Inspection will
show that the faired curve for the modified distribution is similar to the other distri-
butions for type II airplanes shown in figure 5(b). The curves of figure 6 lead to the
speculation that the tail of the distribution should flatten somewhat to account for the
occasional hard landing. Unfortunately, insufficient data exist to confirm the specula-
tion or to provide a guide for the flattening.

Effect of landing gear characteristics.- Landing gear characteristics can materi-
ally affect the amplitudes of center-of-gravity accelerations recorded during landing
impacts and during operations on the ground. For two operations, JVA (ref. 3) and
SXIIIA (ref. 6), modifications made to the airplane landing gear during the recording
program resulted in significant reductions in the acceleration amplitudes. As indi-
cated in the respective references, the modification in one case consisted of a change
in oleo stroke and orifice and in the other case consisted of adding weights to the gear.
The landing impact accelerations presented in this paper and the accelerations recorded
during taxi, takeoff, and landing rollout in the next section for these two operations are
those recorded subsequent to the respective landing gear modifications. It is possible
that the relatively severe results shown in figures 4(x) and 5(d) for operation JXVIB
may be attributed to landing gear characteristics rather than airplane operation.

Taxi, Takeoff, and Landing Rollout Accelerations

The frequency distributions of positive and negative accelerations for preflight
taxi, takeoff, landing rollout, and postflight taxi conditions are presented in table IV for
seven operations. The total frequency distributions of positive and of negative accel-
erations for each operation and the number of flights represented by each frequency dis-
tribution are also presented. For takeoff and landing rollout, the frequency distributions
are given for each of three speed intervals.

In order to compare the accelerations experienced during preflight taxi, takeoff,
landing rollout, and postflight taxi, the data given in table IV for each category of ground
operation are plotted in figure 7. The results show the average number of times per
flight that given values of acceleration were exceeded in each of the categories. Accel-
erations of a given magnitude occurred most frequently during the landing rollout for
most of the operations and least frequently during taxi. The accelerations were from 2
to 150 times more frequent during landing rollout that during taxi. This, in part, is a
reflection of the method of evaluation whereby accelerations subsequent to the initial
positive landing impact are evaluated in the landing rollout category. The maximum




acceleration occurred during landing rollout for four of the operations but occurred for
preflight taxi for operation SXIIIA. Equally high accelerations were recorded for takeoff
and landing rollout for operation EIC and for preflight taxi and landing rollout for opera~
tion JVA,

In order to compare the acceleration experience for the seven operators, the posi-
tive and negative portions of the total distribution for each operation given in table IV
were combined without regard to sign and are shown in figure 8 in terms of the cumula-
tive frequency of occurrence per flight. The results show that the ground acceleration
experiences for the seven operations are similar over most of the range of the data.
For example, the results show that there is about a 3 to 1 difference among the frequen-
cies of exceeding an incremental accelerdtion of +0.2¢g for the seven operations. For a
value of +0.4g, the frequencies differ by a factor of about 4 to 1. The maximum incre-
mental accelerations recorded ranged from 0.5¢g to 0.7g.

Longitudinal Deceleration During Landings

Frequency distributions of maximum longitudinal decelerations during landing
for one airplane during operational flights, check flights, and for combined operational
and check flights are given in table V. The values of deceleration presented include
aerodynamic drag, wheel braking, and reverse thrust; but the contribution of each of
the three sources to the total deceleration is not known. The distributions are pre-
sented in figure 9 in terms of the probability that the maximum deceleration during a
landing will exceed given values. The results show that a deceleration of 0.2g was
exceeded on approximately 60 percent of the flights (Probability = 0.6) and that a value
of 0.3g was exceeded on about 4 percent of the flights (Probability = 0,04). The maxi-
mum decelerations recorded in the 556 landings ranged from about 0.12g to 0.42g.

CONCLUDING REMARKS

A summary of landing impact accelerations has shown that for 24 operations
(airline-airplane combination) representing a total of 22464 landings, the initial positive
incremental landing impact accelerations expected to be exceeded once in 10000 landings
range from about 0.79¢g to about 1.67g. These differences among the landing impact
acceleration experiences of the various operations apparently reflect the combined
effects of differences among the airplane characteristics and landing approach tech-
niques used by the various airlines. In order to permit reliable extrapolation of the
landing impact accelerations, the data were mathematically fitted with a Pearson curve
of the type appropriate to each set of data.



Only small differences in overall normal acceleration experience during taxi, take-
off, and landing rollout exist for the seven operations investigated. Landing rollout con-
tributed most heavily, and taxi contributed the least, to the overall ground acceleration

experience. The maximum incremental accelerations recorded ranged from 0.5g to 0.7g.

For one operation, longitudinal decelerations measured during 556 landings indi-
cated that maximum value ranged from about 0.12g to 0.42g.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Virginia, February 2, 1971.
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TABLE V.- LONGITUDINAL DECELERATIONS DURING
LANDING FOR OPERATION AICF

Frequency of occurrence for —

Longitudinal T
deceleration, Operational Check Combined operational
g units flights flights and check flights
0.12 to 0.13 1 3 4
0.13t0 0.14 6 3 9
0.14 to 0.15 0 0 0
0.15 to 0.16 30 10 40
0.16 to 0.17 42 14 56
0.17 to 0.18 0 0 0
0.18 to 0.19 64 25 89
0.19 to 0.20 71 24 95
0.20 to 0.21 0 0 0
0.21 to 0.22 75 15 90
0.22 to 0.23 52 2 54
0.23 to 0.24 0 0 0
0.24 to 0.25 44 4 48
0.25 to 0.26 10 1 11
0.26 to 0.27 13 0 13
0.27 to 0.28 19 1 20
0.28 to 0.29 4 1 5
0.29 to 0.30 2 1 3
0.30 to 0.31 6 0 6
0.31 to 0.32 2 0 2
0.32 to 0.33 0 0 0
0.33t00.34 2 0 2
0.34 to 0.35 2 0 2
0.35t0 0.36 0 1 1
0.36 to 0.37 1 0 1
0.37 to 0.38 1 0 1
0.38 to 0.39 2 0 2
0.39 to 0.40 1 0 1
0.40 to 0.41 0 0 0
0.41 to 0.42 0 0 0
0.42 to 0.43 1 0 _1
Total 451 105 556
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Zero g
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*‘ "_ or more
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7er0 g o= : N

Figure 2.- Time histories of longitudinal deceleration
during landing rollout.
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Probability of exceeding
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Galvanometer NO'.Of
landings
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107t B 387
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0 .2 4 £ 8 1.0 1.2

Incremental normal acceleration, g units

(a) Data from one operation.

Figure 3.- Comparison of normal acceleration data samples collected
with two types of galvanometers having different frequency-response
characteristics.
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Probability of exceeding

Probability of exceeding
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r Operation AVIIA
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(b) Data from two large samples randomly divided into

a number of smaller samples.

Figure 3.- Concluded.




Probability of exceeding
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Incremental normal acceleration, ¢ units

(a) Operation EIA,

Figure 4.- Probability of exceeding given values of landing impact incremental
normal acceleration for individual operations.
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Iicremental normal acceleration, g units

(b) Operation AIAF.
Figure 4.- Continued.
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(c) Operation EIC,

Figure 4.- Continued.
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Incremental normal acceleration, g units

(d) Operation AICF.

Figure 4.- Continued.
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(e) Operation KID,

Figure 4.- Continued.
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Incremental normal aczceleration, g units

(f) Operation GIIA/B.
Figure 4.- Continued.
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Incremental normal acceleration, g units

(h) Operation EIIC.

Figure 4.- Continued.
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(i) Operation HIIC.
Figure 4.- Continued.
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Incremental normal acceleration, g units

(j) Operation LIIC.

Figure 4.- Continued.
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(k) Operation IIIIA,
Figure 4.- Continued.
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(2) Operation AIVA,

Figure 4.- Continued.
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(m) Operation BIVA.

Figure 4.- Continued.
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(n) Operation CIVA.
Figure 4.- Continued.
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(o) Operation JVA,

Figure 4.- Continued.
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Incremental normal acceleration, g units

(p) Operation DVIA,

Figure 4.- Continued.
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Figure 4.- Continued.
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